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DEPARTMENT OF THE ARMY
U.S. ARMY AIR MOBILITY RESEARCH & DEVELOPMENT LABORATORY
EUSTIS DIRECTORATE
FORT EUSTIS, VIRGINIA 23604

This report was prepared by the Hamilton Standard Division of United
Aircraft Corporation under Contract DAAJ02-72-C-0003. The basic

objective of the effort was to determine the feasibility of developing

a method to predict the maximum power available (MPA) from a helicopter
gas turbine engine at full-power conditions. The MPA prediction was to

be made with an accuracy goal of at least *1% using information obtained
from the engine while the engine was operated at a partial-power condition
of no more than 30% of normal .ated power.

The report consists of a discussion of the various algorithms that could
be considered in determining maximum power available, and the algorithm
that provides the most accurate method for predicting maximum power
available is selected.

The results of the investigation show that development of a method to
predict the MPA of an Army helicopter gas turbine engine prior to lift-off
is feasible; however, before an MPA prediction system with an accuracy

of *1% can be developed, more accurate sensors must be developed. The
accuracy of such a system can also be enhanced by acquiring the necessary
parametric information while operating the engine at partial-power
conditions higher than 30% of normal rated power.

The conclusion and recommendations are generally concurred in by this
Directorate; however, before an MPA prediction system is fabricated, it
is felt that an intermediate effort should be conducted to determine
the accuracy of and optimize a system that uses parametric information
obtained from an engine operated at a power condition higher than 30%
of normal rated power.

The technical monitor for this contract was Mr. G. William Hogg,
Military Operations Technology Division.
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SUMMARY

An investigation was conducted by Hamilton Standard Divieion of UAC, Windsor
Locks, Connecticut, to determine the feasibility of developing a method to
predict the maximum power available (MPA) from a helicopter gas turbine engine
at full-power conditions, The MPA prediction was to be made with an accuracy
goal of at least +1% using information obtained from the engine while the engine
was operated at a partial-power condition of no more than 30% normal rated
power, The MPA prediction was to take into account the effects of all ambient
conditions and all internal modes of engine deterioration,

The Lycoming T53-L13 engine, a gas turbine engine presently in use on the
Army UH-] helicopter, was selected for the investigation. A mathematical
model of the T53-L13 engine and an MPA prediction system was developed
based on Hamilton Standard's prior experience and knowledge of engine control
and diagnostic systems, This model was analyzed to determine the best
attainable MPA prediction accuracy assuming perfect sensors, inaccuracies,
and effects on predicted MPA due to all input parameters, the effect of power
condition on MPA prediction, and possible alternate MPA prediction methods
using various sets ¢i parametric sensors and making various assumptions re-
garding the relative vaiuzs of independent engine parameters, The model was
further evaluated by the use of actual engine operational test data taken by
Hamilton Standard as a part of the U. S, Army UH-1 AIDAPS feasibility study.
Hardware implementation of an MPA prediction system was also investigated.

Development of an MPA prediction system is feasible, An initial system
accuracy of +3,5% can be achieved using ar aircraft-mounted digital computer
and the most accurate, aircraft type parametric sensors available today.

Attainment of the +1% accuracy goal is not feasible under the ground rules

for this study, Further studies are required to determine if +1% accuracy

is attainable when the MPA prediction is made at power levels higher than 30%,
on multi-engine helicopters for example, and when the baseline engine data,
stored in the computer, is updated during flight to reduce errors due to ambient
variations and engine degradation,
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INTRODUCTION

The purpose of this investigation was to determine the feasibility of developing
a method to predict, with an accuracy of better than +1%, the maximum power
which can be produced by a helicopter gas turbine engine at full-power conditions.
The prediction was to be made using information obtained from the engine while
the engine was operated prior to lift-off at a partial-power condition of no more
than 30% of normal rated power, The prediction method was to be capable of
identifying the changes in maximum engine power available due to all possible
types cf engine deterioration and all ambient conditions. The study was based
on a Lycoming T53-L13 gas turbine engine currently being used in the Army
UH-1 helicopter. The feasibility study was first based on the use of information
available from existing sensors normally installed on the engine., It was deter-
mined, however, that the use of these sensors did not permit the desired 1%
accuracy to be obtained, and for this reason the feasibility study was expanded
to include the use of additional and/or more accurate sensors, In addition, it
was assumed that input information was uvailable which provided atmospheric
density data with an accuracy of +. 75%.

The foliowing tasks were undertaken:

PHASE I - ESTABLISHMENT AND DEFINITION OF METHOD

Is A mathematical model of a method to predict MPA was constructed.

2, An estimated attainable MPA prediction accuracy was derived,
Inaccuracies due to input information were identified,

3. Effects of power condition on MPA prediction accuracy were deter-
mined,

4, The hardware and components required to implement the method were
described.

PHASE II - EVALUATION OF METHOD

1.  An evaluation of the MPA prediction method was made using actual
engine operational test data, in the following manner.

a, Input parameters were taken from engine operational test data at
the recommended low-power coandition,



&

b. Using MPA prediction methods and the input parameters above,
the MPA was computed,

c¢. The actual maximum power, as taken from the engine test data
used in (a) above, was then compared to the computed value
determined in (b) above.

2. The above procedure was used to evaluate the ability of the prediction
method to determine the maximum power available when the engine
deteriorated in performance because of either internal deterioration
or changes in atmospheric conditions,

a. In considering engine performance deterioration due to internal
deterioration, the evaluation procedure used engine test data
taken from engines known to be internally deteriorated, or from
engines where Internal deterioration was simulated.

b. In considering engine performance deterioration due to changes
in atmospheric conditions, the evaluation procedure used data
from at least three different engine test runs which included at
least 29°F variation in ambient temperature, and from at least
three different engine test runs which included at least 8, 000
feet variation in altitude.

PHASE IIT - RECOMMENDATIONS

As a result of the feasibility investigation, recommendations were made in the
areas of further sensor development, hardware implementation, system growth,
and continued alternate MPA prediction system studies.

o



DISCUSSION

THE MATHE MATICAL SYSTEM MODEL

A mathematical system model was constructed that included the basic power
prediction concept plus additional features for computing the errors in power
prediction, A prerequisite for constructing this prediction model involved a
cetailed knowledge of the engine characteristics on which the maximum power
was to be predicted,

A mathematical model of a "typical" Lycoming T53-L13 engine was evolved on
an IRM 370 computer, based on engine modeling concepts developed by Hamilton
Standard, The so-called "typical T53-L13 engine was actually the average
characteristics of test—cell data from 75 engines, This test data provided the
steady-state values for Nj, T3, P3, Tg, SHP, and Wy at standard-day conditions
from idle to maximum power. The independent variables (such as component
efficiencies and geometries) of the generic engine model were selected to
duplicate the steady-state test data from the "typical" engine. The resulting
computer model of the T53-L13 engine was then used to provide all required
interrelationships, For example, ch:nges in engine speed, temperature, pressure,
or power resulting from changes in engine gecmetry, component efficiency,

or air pumping capacity were computed, The engine model was used to compute
the partial derivatives or influence of any engine p. rameter on any engine
variable, called influence coefficients in this report,

The basic maximumn power prediction concept is an extension of the engine
diagnostic techniques previously developed by Hamilton Standard. This
prediction concept is described as follows, The prediction computer contains
three types of predetermined stored engine characteristics.

1. Buase-line characteristics, consisting of steady-state locus of values
for measured engine variables over the range of engine operation at
which prediction can be performed.

2 A matrix of influence coefficients relating changes in the engine base-
line variables to changes in such engine parameters as component
efficiencies and geometries, called the "B-matrix" in this report,

3. A matrix of influence coefficients relating changes in engine parameters
to changes in the engine power limit, called the ""C-matrix" in this
report,
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Figure 1 shows a schematic diagram of a single-spcol free-power turbine engine
and identifies the various engine station numbers for future reference.

Measurements of engine variables and environmental conditions are obtained
at low power, After measurement filtering and determination that the engine
is in steady state, the measurement data is corrected to standard-day
conditions, The percentage of point variations between the measurement data
and stored base lines is determined. A gas-path analysis is then used to deter-
mine changes in engine characteristics (efficiencies, airflow, and geometries)
from the values that existed when the stored base lines were determined, The
percentage of point variations in engine characteristics, as determined at low
power, is also assumed to exist at high power., Maximumn power is determined
by computing the fractional change in environment resulting from each change
in engine characteristics and each change in environment from standard-day
conditions, The complete computation of maximum power is performed for
each control limit influencing maximum power, specifically a gas generator
speed limit, a turbine discharge temperature limit, and a metered fuel limit,
The lowest of the three computed values for maximum power is selected as the
maximum available horsepower.

The gas-path analysis, performed on measurements obtained at low power,
consists of a stored data matrix relating the increment between measurement
and base-line data to variations in engine characteristics. This data matrix

is determined in advance based on the engine thermodynamic relations,
Numserical values of this matrix are stored at several low-power conditions,
allowing a power prediction computation over a range of engine power.
Similarly, the computation of the fractional change in maximum power is deter-
mined by a stored data matrix reiating the variation of each engine characteristic
and environment to the fractional change in maximum horsepower. This stored
matrix is determined in advance based on engine thermodynamic relations at the
standard-day maximum-power condition,

The basic tool in developing the power prediction algorithm is a technique
developed by Hamilton Standard which quantitatively defines how the various
engine performance parameters change with respect to each other or with
changes in the environment or the engine fuel control. From a steady-state
operating condition, a set of "influence coefficients' interrelating all the various
engine performarce parameters is determined, From this set of influence
coefficients, the steady-state characteristics as well as the influence
coefficients at any other power condition can be determined. The influence
coefficients computed will ultimately be used in the power prediction scheme,
Since the accuracy to which power can be predicted is affected by the accuracy
of the influence coefficients, it is necessary that these coefficients be computed
as precisely as possible,
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Definition

Gas Generator Turbine Inlet Nozzle Effective Area
Power Turbine Inlet Nozzle Effective Area
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Engine Fuel Flow Rate
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Gas Generator Turbine Efficiency

Power Turbine Efficiency
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Compressor Discharge Bleed Airflow

Compressor Shaft Power Extraction

Figure 1. Schematic Diagram of a Single-Spool
Free-Power Turbine Engine,
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The accuracy of the influence coefficients is judged by determining if the computed
steudy-state characteristics corresponu to actual steady-state characteristics

of the engine obtained from tests, By varying compressor efficiency, gas
generator turbine efficiency, and power turbine efficiency, the comprted steacy-
state characteristics can be tuilored to match actual steady-state characteristics
for the particular engine.

Because of the large amount of test data available, the power prediction concept
was specifically deve'oped for the Lycoming T53-L13 engine, However, the
general concepts are applicable to any free-turbine engine, A modern fuel
control mode similar to the Hamilton Standard JFC 80 (used on the Lycoming
LTC-4V -l engine) was used for this progrum, In particular, it was assumed
that maximum power is limited by a gas generator speed limit, a gas generator
turbine discharge temperature limit, and a metered fuel flow limit, For
component efficiencies as defined in Figure 2 through 4, the base-line steady-
state characteristics as a function of corrected compressor discharge pressure
are shown in Figures 5 through 10, Note that all engine characteristics are
plotted as corrected quantities. Actual base-line data obtained by averaging
test data of 75 T53-L13 engines are also shown in Figures 5 through 10,

Depending on the number and kind of sensor measurements made at low power,
various specific cases of the basic power prediction concept were determined,
(Selection of the specific cases most likely to yield the best power prediction
was guided in part by the results of the engine diagnostic studies in the Army
UH-1 AIDAPS Feasibility Program.) In this study, four such specific cases
were evaluated. The four cases are defined by the following sets of low-power
sensor measurements:

Set I (T}, P}, N|, N, Py, T3, W, Py, SHP, Tp)

SetII (T, P|, N|, N,, Py, T3, Wy, SHP, Tg)
and assume GAN/AY = anl)l /n ot

Setm (T, Py, Nj, Ny, P3, Ty, W, Pg, Tg, Tq)

Set IV (T, Py, Nj, No, Py, Tq, Wy, SHP, T7)
and assume OAN/AN =005 /1

For the first set of sensors, the power prediction algorithm can be outlined
in detail as follows:
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I. Refer low-power sensor readings to standard-day conditions,

6, = T1/518.7

6, = P)/14.7

Nic = \i/AV8y

Noc = N2/\/6)

P3c = P3/b)

T3c = T3/6) 1)

Wee = We/616,F
SHPc = SHP/6,./0)

P7/61

o
-3
@]

i}

Tec = Tq/8)

II, Determine base-line values from stored hardware at the same P3¢ value
as in I,

Nics = f1(P3c)

NocB = f2(P3C)
Tsc = f3(P3c)

f4(P3c) (2)

WicB
SHPcp = f5(P3C)
PrcB = fg(P3c)

T7cB = f7(P3C)

12



III, Compute optimal corrected SHP from corrected SHP,

Correction Factor (CF)

[(Nzc - Nch)/Nch] 2 (3)

SHPco = SHPc/(1 - CF) )

IV. Compute the relative deviation of the measurement data from the stored
base-line data,

DN1 = (Nic - N1cB)/NiCB

DT5 = (T3c - T3cB)/T3CB

DWF = (Wfc - WgcB)/WeCB

DSHP = (SHPgq - SHPCB)/SHPCB E
DT? = (T7c - T7cB)/T7CB

DP7 = (Ppc - P7cB)/P7CB

V. Compute the variations in airflow pumping capacity, efficiencies, and
geometries from the following matrix equation,

[(Wac - Wacﬁ/wacn] PC

pwA| | (c -Nce)/Nce [ DN1
DETAC DT3
DETAT (M - M)/ M DWF
DETAPT| = = B | DNPPT] (6)
DAS (Mpt - NptB) Nt DT?7
DAN J | DP?

(A5 - ASB)/ASB

(AN - ANB)/ANB

The B-matrix in Equation 6 is computed from the influence coefficients and
is a function of the set of engine parameters measured at low power, A
different set of low-po'ver sensors would require a different B-matrix,

13



VI,

Since the value of P3C at which the lowpower measurements are determined
is not known in advance, the'B“matrix has been determined and stored at
several values of P3C, and linear interpolation on P3(C is used to obtain

the actual B-matrix to be used in Equation 6. In the sensitivity studies to

be discussed later, an augmented'B-matrix was used to take into account

the effects of uncertainty in compressor discharge air bleed and shaft power
extraction at low power on predicted power.

Compute maximum power at each of the control limits from the following
equation,

On the T7 temperature limit

SHPOT = (SHPRgp) 6; (1 + DWA)C!! (1 + DETAC)C12 (1 + PETAT)CI3

(1 + DETAPT)C!4 (1 + DA5)C15 (1 + DAN)CL6 fp (Tap) (™)
On N) speed limit

SHPON = (SHPREF) 8;°%" (1 + DWA)C2! (1 + DETAC)C22 (1 + DETAT)C23

(1 + DETAPT)C24 (1 + DA5)C25 (1 + DAN)C20 £ (TApp)  (8)
On Wi limit

SHPOW = (SHPREF) 6;°%7 (1 + DWA)C3! (1 + DETAC)C32 (1 + DETAT)C33

(1 + DETAPT)C24 (1 + DA5)C25 (1 + DAN)C26 f, (Tam) (9)

In Equations 7 through 9 it has tacitly been assumed that the changes in
component efficiencies, airflow, and geometries computed at low power
also apply at high power, This assumption is a source of power prediction
error which is taken into account in the error analysis. In the sensitivity
studies to be discussed later, Equations 7 throug:' 9 were expanded to take
into account the effects of control and sensor inaccuracy at high power on
predicted power as were the effects of uncertainty in compressor discharge
air bleed and shaft power extraction and high power on predicted power,
These factors are important in evaluating the overall accuracy of the mouel;
however, they do not enter into the actual power prediction algorithm,

14



From the horsepowers computed at the three control limits, the minimum
is chosen as the maximum power available; that is,

MPA = MIN (SHPOT, SHPON, SHPOW) (10)

For any other set of low-power measurements, the procedure for determining
the maximum power available is analogous to the p’ ucedure described above
except that a different B-matrix is used, The 'C * coefficients in Equations 7
through 9 do not change unless the engine control mode is changed,

Of the many variables which enter into the power prediction scheme, the one
which has the widest range of variation is ambient temperature, 1he ambient
temperature range of -60°F to 120°F represents a 42, 3% to +11,8% variation
from the standard-day ambient temperature value of 518, 7°R (~59°F), In the
development of the powei prediction algorithm, the effect of ambient temper-
ature appeared as a factor in the equation for horsepower of the form

[ TAM/(TAM) g JCTAM, In using this factor, it was found that over the
wide ambient temperature range expected, the exponent CTAM varied
sufficiently such that using a constant value for CTAM resulted in prohibitively
large errors in predicted horsepower,

An alternate procedure was chosen which uses an ambient t¢mperature correction
factor to account for ambient temperature variations. At a given ambient
temperature, the ambient temperature correction factor is defined to be the

ratio of actual horsepower at the specified ambient temperature to the actual
horsepower at the standard-day reference temperature of 518, 7°F, A separate
ambient temperature correction factor is required for each of the three control
limits and is shown in Figures 11, 12 and 13 for the base-line engine,

As the engine degrades, the ambient temperature correction factor will shift,
The power prediction algorithm does not take into account this shift but uses
the ambient temperature correction factors defined in Figures 11, 12 and 13
for all engines., As a result, an error in the predicted power will be intro-
duced for degraded engines for nonstandard-day ambient temperatures,

Engine diagnostic studies in the UH-1 AIDAPS feasibility program have demon-
strated the need for determining that the engine is sufficiently ear steady state
to obtain meaningful steady-state data, This evaluation has not been duplicated
in this feasibility study, as the evaluation in the AIDAPS program is applicable
to power prediction, Therefore, the technique for determining steady-state
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conditions evolved in the UH-1 AIDAPS program will also be used in the power
prediction algorithm, Satisfying all threce of the following conditions indicates
that the engine is sufficiently near steady state to tuke measurements for
prediction,

1. N} pmAx - N1 MIN within a frame < 200 rpm
. |AN| ¢l between frames < 100 rpm

3. TT7C aAX - Tr7e MIN € 2.5°F for 60 seconds

One frame of data represents two seconds of measurement time, There are four
speed measurements and four temperature measurements in one frame.

The power prediction algorithm involves the use of predetermined ‘B-matnx,

I matrlx, and base lines, As noted, the B-matrix relates the variations in
engine efficiency, geometry, and airflow pumping capacity to measured vari-
ations in speed, temperature, pressure, power, and fuel at low power, whereas
the' CZmatrix relates the variations in maximum power on each contrel limit to
the computed variations in maximum power on each control limit to the computed
variations in engine efficiency, geometry, and airflow pumping capacity. Studies
have indicated that neglect of the changes in the'B“matrix and'C-matrix resulting
from engine degradation causes a relatively minor error in the power prediction
algorithm, Therefore, the' B matrix and'C matrix, as computed for the typical
engine, may be used in all units; i, e,, every prediction computer will contain
identical stored'B'and’ C"'matrices for the same engine model.

However, a review of the actual steady-state data from the 75 engines tested
shows relatively large engine -to-engine variations in the base lines. As a

result, it appears necessary to measure and store a unique set of base-line values
for each engine to avoid significant errors in prediction, This requires an initjal
steady-stute "'calibration’ for each engine to be loaded into the prediction
computer, The power prediction can then accurately predict the effect of any
subsequent engine degradation, It should be noted that this initial calibration
requirement of the engine base lines is based on observed engine -to -engine
variations of the T53-L13 model and may not apply to another engine model,
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CONFIRMATION OF MODEL ACCURACY

To analytically evaluate the validity of the algorithm for computing MPA, the
base-line engine was "degraded' by making a 17 increase in ¢, My, 7 pt,

Ag, and Ay. The influence coefficients were used to obtain a set of steady-
state engine data for the "degraded' engine. This data served as the source

of low-power measurements for the degraded engine. The MPA was calculated
using the steady-state characteristics for the degraded engine and using the
power prediction algorithm., All computations were made at sea-level standard-
day conditions and at optimal N9 speed.

In order to determine MPA when on N| speed limiting for the steady-state
characteristics of the degraded engine, it is first necessary to determine the
new N] limiting speed, It is assumed that the fuel control is a W¢/§) type droop
control with a droop slope given by:

wi/ NIAO 1
(a—f gIyi0 1/v01) = -6.5 (11)

Wf/6l' Nl/‘/e_l Droop Line
p

For sea-level standard-day conditions, Figure 14 shows a plot of Wg/ 8] vs,

N 1/\/3_1 for both the base-line and degraded engines. Also shown in Figure 14
is the control droop line which passes through the base-line point of Nj /\/?0— =
24,700 rpm and W§/ 8] = 793 pph and whose slope is given by Equation 11, The
intersection of the ''degraded' steady-state line with the droop line defines the
N) limiting speed for the degraded engine. From Figure 14, the limiting speed
for the degraded engine is approximately 24, 820 rpm, Figure 15 shows power
turbine horsepower as a function of gas producer speed for the base-line and
degraded engines, The horsepower at the N} limiting speed for the degraded
engine is designated by the symbol "SHPON'" and is found to be 1383 hp. Figure
16 shows power turbine horsepower as a function of T7 for the base-line and
degraded engines. At the T7 limit value of 1743°R, the horsepower for the
degraded engine designated by "SHPOT" is found to ' e 1545 hp. Figure 17
shows power turbine horsepower as a function of fuel flow for the base-line

and degraded engines. At the Wy limit value of 793 pph, the horsepower for
the degraded engine designated by SHPON is found to be 1440, The above
results were analytically determined from the steady-state characteristics of
the '"degraded' engine, From these results, the MPA is given by:

MPA = MIN (SHPON, SHPOT, SHPOW) = 1383 hp (12)
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At a relatively low power condition, input data for the power prediction program
was obtained from the steady-state characteristics of the degraded engine at a
constant P3/§) value, Table I shows the steady-state values usec as measure-
ments in the power prediction program at P3/§; = 60,3647 psia.

The results from the power prediction program are summarized as follows:

SHPON = 1390, 9448 hp (N; Limiting)
SHPOT = 1557, 09668 hp (T7 Limiting)
SHPOW = 1449,7737 hp (W Limiting)

These predicted values are also shown in Figures 15, 16, and 17, From the
power prediction program, the MPA is given by

MPA = MIN (SHPON, SHPOT, SHPOW) = 1377.877 hp

The results from the power prediction program are within 1% of the analytical
results based on the steady-state characteristics, The small errors are due in
part to errors in precisely determining the steady-state characteristics of the
degraded engine, errors in predicting power at each control limit, and computer
round-off errors. The results, however, do show that the power prediction
algorithm is conceptually correct.

PARAMETRIC SENSITIVITY STUDIES AND ERROR ANALYSES

The following conditions were assumed for the parametric sensitivity studies
and error analyses:

1. The pilot-selected N2 speed and collective pitch result in 100%
rotor speed at the maximum power condition being predicted.

2 The detalled error analysis was performed using the T53-L13 heli-
copter engine with a modern helicopter engine control similar to
the control mode used on the Lycoming LTC-4V-1 engine, Specif»
ically, it is assumed that maximum power is limited by the least
of three control limits on N;, T7 and Wy,
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TABLE I. MEASUREMENTS AT LOW POWER FOR ANALYTICAL
CONFIRMATION OF MODEL ACCURACY

P3/81 = 60,3647 psia

Parameter Base-Line Values Degraded Engine*
N1/V/6i 20, 700 rpm 20, 800 rpm
T3/ 6, 851.456°R 847.824°R

y
Wi/(6,6)) 354, 036 pph 343, 846 pph
Pq/6) 23, 7552 psia 23,7057 psia
(hppy )/ (61 /61) 369. 493 hp 363,159 hp
Tq/6, 1369, 86°R 1333,32°R

* Measurements corresponding to 17 increase in 7, N r)pt,
As, and AN-
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3. Specific assumptions needed to perform the error analyses were
included in Appendix I,

4, The interest in power prediction is limited to lift-off conditions;
therefore, effects of flight speed need not be included in the error
analysis,

Sensitivity studies were conducted to determine the influence of each pertinent
factor on the accuracy of computed maximum power, Sensor errors at low
power and at high power are considered separately.

The results of the sensitivity study for Set I sensors are shown in Table II,

Table II also gives the error in predicted power due to uncertainty in compressor
bleed air (WBL) and compressor shaft power extraction (SPE/W,) at low power
and high power, As an example, Table II shows that an N} speed sensor indi -
cating a speed 1% higher than actual speed at low power (N] = 21, 900 rpm,

SHP = 35. 27 of maximum power) causes the computed maximum power to be

4, 02% less than the actual maximum power if the engine is on the Ty control
limit,

Note that N5 speed at both low and high power is defined as 100%. The N
speed is actually dependent on both pilot-selected Ny limiting speed and pilot-
selected collective pitch, Similarly, it is assumed that N2 speed is 100%, and
collective pitch is selected to cause the engine to encounter a control limit
while at high power.

The percent-of-point temperature and pressure sensor errors are percentage
of absolute temperature ("R) and absolute pressure (psiz), respectively,
(WBL) is percentage of compressor airflow, (SPE/W,) is horsepower per
pound per second of compressor airflow,

Table HI gives the sensitivity table for Set II sensors, Note that this set of
sensors is not sufficient to uniquely determine the six performance parameters,
A relationship between the independent variables must be assumed, This
assumed relationship (although inexact) is that QAN/AN = -677pt/ Npt and was
demonstrated to be a good approximation in the AIDAPS engi.e diagnostic
program. Note also that this set of measurements at low power was obtained
on actual engines in the AIDAPS program,

The total horsepower prediction errors for prediction algorithms using the first
two sets of sensors are summarized in Tables IV, V, VI, and VIO, Table IV
is an error summary when using Set I sensors. Using constant ''C" coefficicnts
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(computed at maximum power on a standard day) results in a significant pre-
diction error at nonstandard-day conditions, Table V is an error summary
having the same conditions as Table IV except that all "C" are interpolated
values, Details about interpolation of ""C'" are described later, Table VI is an
error summary using the same algorithm as in Table V, but predicting maximum
power at a lower horsepower (19.7%). Table VU is 2an error summary when
using Set II measurements at low power,

Tables IV through VII summarize the root sum squared (RSS) prediction error
for each of the three control limits (Ny, Ty, and W¢), Tables VIII through XX
contain a detailed error list, Also, Appendix I provides additional information
and the conditions assumed when performing the error analysis, Tubles V

and VI also contain an error summary when using so-called "standard sensors'',
In particular, the pressure sensors and shaft horsepower sensors are not the
"best available," Errors in the assumption that aAN/AN = "anpt/npt are a
source of power prediction error and are included in the error summary sheet.

The range of ambient conditions where each control «imit influences maximum
power is defined in Figure 18, This figure shows the combinations of P; and
T} where the N) limit, T limit, and Wg limit determine the maximum power,
For example, horsepower is limited by Wy at high P and limited by Nj at low
P] in the temperature range of -12°F to 59°F for the base engine. All three
limits occur simultaneously at standard-day conditions (P} = 14, 7 psia and

T) =518,7°R = 59°F), The range of thermodynamic conditions where a Wy
limit, Tq limit, or N) limit can occur is smaller than the complete range of
ambient conditions., Hence, the desired changes in the influence of horsepower
on coefficients ""C' are correspondingly smaller and are listed in Table IX,
The effect of nonstandard day on "C' in the range where each limit can be
encountered is shown in Table X,

It is noted in Table IV that a dominant error is caused by the use of a constant
"C" (computed at standard day) for nonstandard-day conditions, Studies
indicate that most of this error can be eliminated by storing two values of each
""C" (instead of one) and then interpolating as a function of the existing P) and
Ti. The specific conditions where '""C" is computed (and stored) and the method
of interpolation for each limit are defined below:
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[
' TABLE IX. DETAILED ERROR LIST - EFFECT OF NONSTANDARD DAY

ON THE VALUE OF "C'" BASE ENGINE
N, Limit
T} = 59°F T; = -12°F
Nic = 24,700 NiC = 26, 600
Variable o non ac’
N - .7620 - . 7950 +,0330
n - .9790 -1.0583 + ,0793
Npt 1, 0044 1.0061 - .0017
AN -1,6937 -1.6377 - . 0560
Wa 1.2929 1.3710 - .0781
As . 7930 L7579 + ,0351
T Limit
|
|
i T) = 59°F Ty = 120°F
j NiC = 24, 700 Njc = 22, 900
| Variable "c" ialol a'c"
Ne 3.3798 4,3462 - . 9664
n 4,3485 5. 5683 -1,2198
, Npt 1.0061 1.0052 + ,0009
E AN 2,4311 3.1649 - .17338
| W, - . 0597 - 3484 + ., 2887
; As -1, 5644 -2, 0589. +.4945
L

b

e
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TABLE XII.

DETAILED ERROR LIST - HIGH POWER DEGRADAITON
BEING DIFFERENT FROM LOW POWER DEGRADATION

Base
Engine Estimate Difference Horsepower
Limit Variahle HEY Between Low and High Error
Power Degradation
(%of Point)
N
1 p - .7620 + 0,15 .1143
c
74 - .9790 + 0,10 .0979
7ot 1. 0044 +0,10 .1004
W, 1.2929 + 0,10 .1293
A5 . 7930 0. 0.
. -1,6937 0. 0.
RSS Error  0,22%
T7 g 3.3798 t+ 0,15 .5070
7t 4, 3485 + 0,156 .4349
7 p1 1. 0061 + 0,10 .1006
Wa - . 0597 + 0.10 .0060
A5 -1, 5644 0. 0.
An 2.4311 0. 0.
RSS Error  0.68%
W n . 8269 10,15 .1240
c
74 1.1859 £ 0,10 .1186
Tpt 1. 0051 t 0,10 .1005
W, - .0281 + 0,10 .0028
A5 - .6320 0. 0.
A - .034 0. 0.
n
RSS Error  0,20%
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Control Corrected Speed at Which Variable Used in Resulting Max.

Limit "C'" ’s Computed (rpm) the Linear Interpolation Error in ''C"
N| 24, 700 and 26, 600 VT or /6] Less than <, 01
Tq 22, 900 and 24, 700 T, or 6, Less than %, 02
Wi 24, 340 and 26, 900 P,J/T, or §;/6,  Less than 4,01

A particularly large prediction error can result from uncertainty in compressor
bleed air (WRL,). Variations in bleed air at maximum power cause variations
in actual maximum power, causing a prediction error, Tables XIII and XIV
contain a detailed list of errors caused by Wy, and compressor shaift power
extraction (SPE),

Sensor characteristics are listed in Table XV. The sensor range and sensor
type assumed in this study are identified in addition to the sensor error, Tables
XVI through XX contain detailed lists of power prediction errors resulting

from sensor errors,

Review of the error summary sheets (Tables V, VI, and VII) indicates that the
total RSS error in power prediction is in excess of the +17; goal, However,
several improvements in power prediction accuracy are feasible as noted below
and summarized in Table XXI:

1. The error caused by linearization of nonlinear differential equations
can be eliminated by a more sophisticated analytical effort to derive
"B" and "C" coefficients to be stored in the power prediction computer.

oo
.

The change in actual power can be reduced due to uncertainty in
compressor bleed air (Wg1,) or compressor shaft power extraction
(SPE) by providing more nearly constant demands on both WBL, and
SPE. Assume that all uncertainties in Wg, and SPE are eliminated.

3. The WBL and SPE are either controlled or measured in such a manner
at the low -power prediction condition that there is no uncertainty in
WRL or SPE.

Table XXI is an error summary sheet for these improved conditions, Note that
sensor errors are now the dominant error, A review of the sensor detailed error
list (Table XVI) indicates that the dominant errors are caused by T1, T7, and



TABLE XXI, ERROR SUMMARY SHEET - PREDICTION AT 35, 27, HORSE -
POWER AT N2 = 100% WITH FEASIBLE IMPROVEMENTS IN
POWER PREDICTION USING CURRENT "BEST AVAILABLE"
SENSORS SET I LOW-POWER SENSORS

N] Limit Ty Limit Wy Limit

Error Source « Power 7 Power ‘i Power
Nonstandard day .10 .23 .21
Use of base engine "C" for

degraded engine .03 .50 .02

High-power degradation being

different from low-power

degradation .22 .68 .22
Change in actual power due to

uncertainty in WRE, and SPE

at high power 0 0 0
Uncertainty in WRI], and SPE
at low power 0 0 0
Sensor errors at low power 2,61 3.60 2133
Control limit and sensor
errors at high power o 12 1,55 .14
TOTAL RSS ERROR 2,67 4,02 2,46

Errors in T}, Ty and SHP

sensors at low and high

power 2,63 3,92 2523
All prediction errors excluding

errors in Ty, T7 and SHP

sensors 46 . 89 1.02
TOTAL RSS ERROR 2,67 1,02 2,46

]
-3




SHP sensor errors, The prediction errors caused by these three sensors are
listed separately, and all other prediction errors are lumped together (also
tabulated in Table XXI). The prediction error caused by er ;lae degradation,
ambient conditions, control errors, and sensor errors is about 1% or less
when the T), T7 and SHP errors are excluded. The power prediction errors
caused by T], T7 and SHP sensor errors are much more significant than the
ciombination of all other errors,

In summary, the dominant errors in power prediction are caused by the errors
in currently available T), Ty, and SHP sensors and uncertainty in WgJ, and
SPE, If it is possible to eliminate the uncertainty in WB [, and SPE by some
operational procedure, then the dominant errors in power prediction are caused
by sensing T, Tq, and SPE,

A sensitivity and error analysis was made for Set III sensors to try to reduce
the prediction error due to sensor errors at low power, This set is identical
to the original set except that the shaft horsepower measurement is replaced

by Tg. The sensitivity table for this set of sensors is shown in Table XXII,
Table XXIII is a detadled list of the errors due to low-power sensor inaccuracies
and uncertainty in W], and SPE at low power, Table XXIV summarizes the
error for the power prediction system using this set of low-power sensors,
Instead of reducing the power prediction error, this set of sensors results in a
significant increase in the error due to low-power sensor inaccuracy, For this
reason, this set of sensors is abandoned as a possible candidate for the final
power prediction model.

Set IV, which uses one less sensor than any set previously considered, is
identical to Set I but, instead of P7, assumes the relationship JAN/AN =
-OMpt/Mpt. This set is also identical to Set II, with Ty replacing the Tg
measurement at low power, Table XXV is the sensitivity table for this set
of sensors, Comparing Table XXV with Table III, it is seen that the
sensitivities are not significantly different,

EFFECT OF POWER CONDITION ON MPA PREDICTION

Tables XXVI and XXVII give a detailed listing of the errors due to Set IV sensor
inaccuracies at 35, 2% and 19, 7'; power. Generally speaking, as power pre-
dictions are made at low power levels, the error in predicted power increases,
The increase in error is due primarily to an increase in the sensitivity to sensor
errors and also to an increase in the percentage of point sensor errors, Table
XXVII is a summary of all the errors for Set IV sensors when predicting at
35.27 power, Comparing Table XXVIII with Table VII, it is seen that the total
error for both sets of sensors is essentially the same.
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TABLE XXV. ERROR SUMMARY SHEET - PREDICTION AT 35.2% POWER
AT Ng = 100% USING INTERPOLATED ''C" IN PREDICTION
ALGORITHM SET Il SENSORS

Ni Limit  Tq Limit Wf Limit
Error Source % Power % Power % Power

Linearization of nonlinear

differential equations .50 1.23 .35
Nonstandard day .10 .23 .21
Use of base engine '"C" for

degraded engine .03 .50 .03

High-power degradation being

different from low-power

degradation .22 .68 . 22
Change in actual power due to

uncertainty in Wgp, and SPE

at high power 1.17 4,96 2.15
Uncertainty in WB1, and SPE
at low power .25 1.59 .72
Sensor errors at low power* 6.40 5.42 6.24
Control limit and sensor errors
at high power* .92 1.55 14
TOTAL ERROR: 6.56 7.82 6.70

*Based on best available sensors.
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TABLE XXVIII. ERROR SU" ‘' ~ SHEET - PREDICTION AT 35.2% POWER
AT Ng2=10 .G INTERPOLATED "C" IN PreEDICTION
ALGORITHM SET IV SENSORS

N] Limit T7 Limit Wyg Limit
Error Source % Power 9 Power ¢ Power

Linearization of nonlinear

differential equatious .50 1.23 .25
d AN/AN not equal to
g Upt/'lpt .30 .54 .40
Nonstandard day .10 .23 .21
Use of base engine '""C" for

degraded engine .03 .50 .03

High-power degradation being

different from low—power

degradation .22 .68 ., 22
Change in actual power due to

uncertainty in WBL, and SPE

at high power, 1.17 4,96 2,15
Uncertainty in WBL, and SPE
at low power .38 1,82 L7
Sensor errors at low power 2,34 3.25 1.96
Control limit and sensor
errors at high power w02 1.55 e
TOTAL ERROR 2.77 6.59 3.16

GR




Since accuracy improves when the predictions are made at higher power levels,
errors due to sensor inaccuracies at approximately 609 power were calculated
for the system using Set II and Set IV low-power sensors; i.e., Tg or Ty
without P7 and the approximation GAN/AN = -anpt/ﬂpt- For single-engine
applications, prediction at 60 power would not be feasible since it is desired
to make the prediction while still on the ground (307 or less of maximum rotor
power), In twin-engine installations, however, one engine could be operating
at 60% power while the other engine is essentially at 0% power, Table HI also
includes sensitivities at 57, 5% power, Tables XXIX and XXX list the errors
due to sensor inaccuracies at approximately 60% power for Set II and Set IV
sensors, respectively, There is no significant difference in thr error hetween
the two sets of sensors. Comparing Table XIX to Table XXIX and Table XXVI
to Table XXX, there is a moderate improvement in the power prediction
accuracy due to low-power sensor errors,

ALTERNATE MPA SYSTEM STUDIES

The power prediction model described helow is presented as a possible alter-
native approach to predicting maximum power available, This alternate model
is significantly less complex than the primary model since it does not involve
the rather elaborate gas-path analysis used in the primary model. The pre-
diction concept is based on the assumption that the engine performance remains
unchanged after the power prediction calibration. A major disadvantage of this
simpler approach is that changes in maximum power caused by degradation in
the engine (since power prediction calibration) directly result in a2 power pre-
diction error,

The alternate power prediction scheme can be divided into two major operations:
a simple one-point calibration, and the actual power prediction operation, The
calibration operation is done once and thereafter is repeated only when it is
ascertained that the engine health has deteriorated from the time the previous
calibration was made,

A detailed outline of the alternate power prediction model is given below, The
first step establishes a low-power reference value for (P3/68)), (T7/6)), and
wg/é; 0 - 743) at a corrected speed of 21, 500 rpm; the 21, 5004pm point
corresponds approximately to 30% power, The first time that the first step

is executed, the values for the above three corrected parameters are stored
for future power prediction,

The second step establishes the optimum horsepower corrected to standard-day

sea-level conditions at cach of the control limits, These values are also stored
for future power prediction,
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The third step in the outline describes the actual power prediction operation.
Each time a power prediction is to be made, the values of (P3/81), (T7/61),
and (Wg/ 816 - 743) are obtained at a corrected speed of 21, 500 rpm as des-
cribed under the first step of the outline, The present computed values are
then compared to the original stored values, If the corresponding values agree
to within specified tolerances, then the predicted power obtained under the third
step is credible; otherwise it is not, The above tolerances have not beru
established but would be strongly influenced by sensor inaccuracy 2=u also by
anticipated engine degradation,

The constants required in the several equations given for the alternate system
are obtained from the steady-state engire characteristics for the base engine,

The values of the constants are given in Table XXXI.

I. Establish Low Power Reference Values for (P3/61), (T7/6)), and
Wig/6)6) - 743) at N //8] = 21,500 (~30% power),

A, Measure T)

B. Compute @) = T]/518.7

C. Compute N} set = 21, 500,/6)

D, Pilot sets actual N speed to » value equal to N) SET+200 rpm,

E. Allow engine to achieve steady state and measure Nj, P3, T7, and
Wg.

F. Compute:

6, = P /14.7
NiCc = Nl/\/_gl—
Psc = P3/éi > Corrected Quantities
T7¢ = Tq/6)
wic - (Wi/618; - ™)

Note: Step I-F is repeated periodically to correct for engine deterioration,



C. Extrapolate corrected measurements to Nj//@) = 21,500 thus:

P3/ 6

ey (N1/8) = 21,500 P3¢ (21, 500/N; ) PNPL

ik CTNPL

ta (Nl//9_1) = 21,500 Tqc (21, 500/N)¢)
DA CWNLP
e ) (N;/V/8) = 21,500 ~ Wgc (21, 500/Nj¢)

H,  When calibrating, the values obtained under (G) are stored for future
power prediction,

II. Esiablish optimum horsepower corrected to standard-day sea-level
ccaditions at each control limit.

A, At or near max, power, measure the following Ty, Py N, No, Wy,
Tq, SHP, and P|/PapM.

B. Compute corrected quantities

6, = T/518.7
6 = P)/14.7
Nic = Ni//6)

Nac = Na/V 6y
SHP: = SHP/§; V@,
W¢/616) '674)

H

Wic

C. Apply correction factor to SHP¢ for nonoptimal N»

bl ey e e
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(NoclopTr = f(N)c) (curve lookup)

3 [Ngc - (Nzc)opT] /(Nzc)ost

SHPc/(l - CF)

CF

SHPCO

where OPT is optimal,

D, Predict N} limit (actual Pm)
NiLim = 24 700[(793/ch)]- 09322 (N, /24, 700) - 3941

E.  Compute optimal horsepower at Nyy;5m, T7Lims and W qm.

hpCNREF = SHPqq (V1 Lim/N) )N (P} /Papp ¢!
hpeTREF = SHPCO (T7Lim/T70)HT (P)/PAM)C2
hoCWREF = SHP(o WiLim/Weo)CH W

F. Store N1 Lim, hpcNREF: hPCTREF, and hpcwRgF for future power
prediction,

Note: Step II is repeated periodically to correct for engine deterioration,
. Predict Maximum Power Available (MPA),

At some future time after the calibration procedure outlined under

steps I and IT have been completed, the following procedure is used to

predict maximum available horsepower:

A, Repeat I-A through I-G,

B. Compare present computed values of (P3/8)), (T7/6)), and
(NF/6161 - 743) at Nj 6] = 21,500 to the stored values, If the

values agree within specified tolerances (to be established), then the
following power prediction is credible; otherwise, it is not,
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On Nj HUmit:

SHPON = (hpCNREF)(Jl)(fN)(Pl/PAm)Cl
On Ty Limit:

SHPOT = (hperREF)(81! ET)(P1/Pan)C2
On Wg limit:

SHPOW =  (bpcwre )6 C2)(Ew)

fN» fT, and fyy are defined by Figures 11, 12, and 13, respectively.

MPA = MIN (SHPON, SHPOT, SHPOW)

Error Analysis (Alternate Model)

Table XXXII summarizes the error for the alternate power prediction mcdel,
Details regarding the error calculations can be found in Tables XXXII and XXXIV,

In addition to having large errors in predicting maximum power, this model has
the severe disadvantage of not being able to compute changes in maximum power
due to engine degradation (since calibration)., For these reasons, this model is
judged to be unacceptable for a power prediction system,

FINAL SYSTEM SELECTION

Based on accuracy considerations and the number of sensors required, the power
prediction model selected is the basic power prediction concept with sensor
Set IV. The final selected system is described as follows.

At a relatively low power condition not to exceed 30% of the nominal sea-level
standard-day value of maximum power turbine horsepower for single-engine
applications, the following s.eady-state engine and environmental parameters
are measured,



TABLE XXXI.

ALTERNATE POWER PREDICTION MODEL
DE FINITION OF CONSTANTS

Symbol Value*
CPNPL 3,1423
CTNPL 1.235
CWNLP 4,5782
CHN 5.5394
(of 1,139
| CHT 3.8169
C> 1,1078
CHW 1,319
Cs -. 8406

. *Numerical values were obtained from the analytic- . base-
line engine characteristics,
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Low-power sensor set (T}, P}, P3, T3, Ny, N2, Wy, SHP, and Tq). The engine
will be considered to be vperating in steady state if the following three conditions
are satisfied:

1. N] max, - Nj min, within a frame < 200 rpm,
2, IANIC| between frames < 100 rpm,
3. Tqc max, - Tqc min, < 2,5°F for 60 seconds.

In the above conditions, a frame of data represents four speed and four temp-
erature measurements in two seconds of measurement time,

From the low-power sensor set defined above, the following set of corrected
qualities is computed:

Corrected Sensor Set (P3/8)), (N1/y/01), (T3/61), (Wg/8; 61°Y), (SHP/8;/8)),
(T7/61), (N2/\/61)

where
8] = (P1/14.69) and #, = (T}/518.7)

From stored base lines, the base-line values of the corrected parameters are
computed at the same corrected sensor value of P3/8]. The stored base lines
define the nominal steady-state characteristics as a function of P3/&| using
linear interpolation, Test duta from the AIDAPS program showed a significant
engine-to-engine variability in the base lines. It is therefore necessary to store
a unique base line for each engine rather than a universal base line for a
particular model engine to minimize prediction error. At the same corrected
P3/ 61 va. ie, a base-line set of corrected engine parameters is obtained,
Base Set (N1cB, T3cp» WicBs» SHPcRB, T70B). The corrected shaft horse-
power measurement is then corrected to optimal shaft horsepower due to
operation at nonoptimal N speed,

2

CF = [ (Na¢c - N2cB)/Nucnl

1l

SHPc( SHP¢/(1 - CF)

R0



Relative deviations of the corrected measurements from the base-line data are
computed as follows:

DN1 = (Njc - NjcB)/N:cB

DT3 = (T3¢ - T3cB) T3cB
DWF = (Wgc - Wicp)/WicB
DSHP = (SHPCO - SHP(p)/SHPCp
DT7 = (T7c - T7cB)/ T7cB

Relative deviations in airflow pumping capacity, component efficiencies, and
gas generator inlet nozzle effective area are computed from the matrix
equation:

( DNA] [DN1 ]
DETAC DT3
DETAT| = B [DWF

DETAFT DSHF

DAS5) ‘DT7J

The elements of the B-matrix are actually the influence coefficients developed
,and include the approximation that (OAN/AN) = (-OMpt/Npt). A universal
"B-matrix is used for all engines of the same model number, Since the value
of P3/8) at which the low-power sensor readings are taken is not known in
advance, several values of the B-matrix sufficient to cover the expected range
of P3/8] will be stored, and linear interpolation with respect to P3/8; will be
made to arrive at the proper B-matrix,

The low-power sensor measurements are not sufficient to compute variations
in all six performance parameters. The relative variation in power turbine

inlet nozzle effective area is obtained from the approximate relationship

DAN = -DETAPT

R1



Maximum power of each of the control limits is computed from the following
equations:

On the T17 limit:

SHPOT = (SHPRgp) (81) (1 + DWA)CL! (1 + DETAC)CI? (1 + DETAT)CI3

(1 + DETAPT)C14 (1 + DAS)C15 (1 + DAN,C16 £
On the N} limit:

SHPON = (SHPRgp) (861°%7) (1 + DWA)C2l (1 + DETAC)C22 (1 + DETAT)C23

(1 + DETAPT)C24 (1 + DAS)C25 (1 + DAN)C26 fx

On the Wy limit:

SHPON = (SHPRgp) (6;°%7) (1 + DWA)C3! (1 + DETAC)C32 (1 + DETAT)C33

(1 + DETAPT)C34 (1 + DAS)C35 (1 + DAN)C36 £y,

fT, N and fyy represent the ambient temperature correction factor and are
stored as univariate functions of ambient temperature. These are universal
curves valid for any engine of a given model number, The''C"coefficients are
also unique for a particular model engine. An analytical technique developed
by Hamilton Standard is used to compute the elements of the'C'~matrix, For
each of the ""C" coefficients, two valuzs are stored, and linear interpolation
2s defined below is used to obtain the actual '"C" coefficient,

Variable Used in the Linear

Control Limit Interpolation
N) VTror /8
T7 T) or 6,
Wi Ph/T_l or f“/gl—
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From the horsepower computed at the three limits, the minirnum is cnosen as
the maximum pcwer available, that is,

MPA = MIN (SHPOT, SHPON, SHPOW)

From an accuracy consideration alone, the Set II sensors (Tg withont P7) have
the smallest total error in predicted maximum power (see Table VII), The
selected model has only a slightly higher total error; however, it offers a major
advantage over Set II sensors in that it requires one less sensor, With Set I
sensors, a Tg sensor Is required at low power and a T7 sensor at high power;
with Set IV, the T7 sensor is used at both low and high power,

In the event that engine diagnostics are desired in addition to maximum power
prediction, then with the selected system only one additional sensor would be
required (P7) to achieve one of the besk-known engine diagnostic algorithms,
Conversely, if engine diagnostics are already present, then maximum power
prediction system can make use of the available sensors and not require any
additional sensors,

For the selected system, the expected accuracy in predicted power at the three
power levels considered using the best available sensors is:

Total RSS Error in Predicted Power Including Uncertainty in WBL, and SPE

Power Level N] Limiting T7 Limiting Wf Limiting

20% power +3, 87% +6, 97% +3,91%
35% power £2,77% +6,59% +3,16%
60% power +2.17% 16, 35% +2,78%

The T7, T], and horsepower sensors at low power alone result in an error in
predicted power of nearly 2%. To achieve the best accuracy, it is necessary

to eliminate uncertainty in compressor bleed air and shaft horsepower extraction
and to make (he prediction at the highest practical power level. On single-engine
installations, this level would be approximately 30% power. On twin-engine
installations, the l. sel would be substantially higher if all engines were operated
at zero power except the engine on which maximum power was being predicted,
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As mentioned previously, a major contribution to the total inaccuracy in pre-
dicted power is the uncertainty in compressor bleed air and shaft pcwer
extraction, It may be possible through procedural techniques to significantly
reduce and essentially eliminate the error due to these two error sources,

If these errors are eliminated, then the expected accuracy of the selected
power prediction system at the three power levels considered using the best
available sensors is:

Expected RSS Error in Predicted Power at No Uncertainty in WBL, and SPE

Power Level N] Limiting T7 Limiting Wf Limiting

20'c power +3.67% +4, 52 £3.17%
357 power 12, 489, 13,94 +2,18%
60"/ power t1,79% +3, 53% +1,59%

T] accuracy may be improved by selecting platinum resistance sensors to have
more nearly uniform characteristics and by computer compensation of errors
due to nonlinearity, This selective process will increase sensor cost and
comptter complexity, However, the T; sensor plus interface error vader these
conditions can be reduced from t2, 2°R to +1,1°R, Then the prediction error
caused by sensor errors at maximum power (shown in Table XVI) is reduced
from .52 to .44'0 when on the N} limit, Also, prediction errors caused by the
T) senscr errors at 35, 2 power (Table XXVI) are reduced from 1,478, 2,188,
.6132to ,739, 1,094, .307 when on the Ny, Tg, Wr limits, respectively. The
total expected RSS error in maximum power when predicted from 35 power is
summarized below:

Expected RSS Error in Predicted Power at No Uncertainty in WBL and SPE

Also With T} Probes Selected for More Uniform Characteristics

Power Level N} Limiting T7 Limiting W¢ Limiting

35 power P2, 13,16 13, ] 20

A comparison of the prediction errors caused by the various sensor errors
(Table XXVI at low power and Table XVI at maximum power) with T| sensor
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errors reduced by selective matching of probes shows that the dominant errors
are now caused by the SHP and T7 sensors.

If in addition to selecting T probes for more uniform charuacteristics the SHP
and T7 sensor error could be reduced by a factor of say 4, then the total

expected RSS error when predicted from 359 power would be:

Expected RSS Error in Predicted Power at No Uncertainty in WRI, and SPE

Also With T) Probes Selected for More Uniform Characteristics and SHP ardT7

Sensor Errors Reduced by a Factor of 4

Power Level N| Limiting Tr Limiting Wf Limiting

35% power +1.18% +2,07% 11,30%

If sensor inaccuracies could be eliminated altogether, the total expected RSS
error in maximum power predicted would be significantly improved. When
predicted at a 357 power level, the total RSS error in predicted power, assuming
no uncertainty in WB[, and SPE and perfect sensors at low and high power would
be:

Expected RSS Error in Predicted Power at No Uncertainty in WB], and SPE

Also No Sensor Errors at Low and High Powers

Power Level N] Limiting T7 Limiting Wf Limiting

35'¢ power &, T0' +1, 00% +,78%

These remaining errors result from a) linearization of the complex nonlinear
differential equations base engine (modeling errors), b) using incremental
variations from the basc engine mcdel for nonstandard-day conditions, c) using
incremental variations from the base engine model for engine degradation, and
d) high power degradation characteristics at prediction power, It can be con-
cluded from the above unalysis that within the ground rules of the present study,
a prediction accuracy of at least t1° is not attainable, even with error free
sensors, However, significant improvement in accuracy may be achieved on
multi -engine helicopters where the MPA prediction can be made at high power
levels, and if the single-point ground computation concept is expanded into a
"continuous update system' as described in Appendix I paragraph A of this



report, In a continuous update system, the data stored in the MPA computer
would be continuously and automatically modified as the engines are operated
through their power range under random ambient and flight conditions,

In this manner, the errors due to ambient variations and engine degradation can
be virtually eliminated. The pilot could even run individual engines to their
power limit during flight to ensure the best possible MPA reading prior to the
next take off,

In light of further possible accuracy improvement under slightly different study
ground rules, it is recommended (see Recommendations) that f ~ther analytical
studies be conducted to determine the feasibility of predictiny ~ PA within +1%
accurary at higher power levels using a continuous update typ. of prediction
systen.,

SYSTEM M7DEL EVALUATION USING AIDAPS FLIGHT TEST DATA

The actual ~rgine test data obtained from the UH-1 AIDAPS program was pre-
pared fo. ev uation of the maximum power available (MPA) algorithm, The
AIDAPS dawn r :duction program was modified to extract the engine data of
interest from the raw flight test data, AIDAPS data was selected based on its
operating range (horsepower, altitude, ambient temperature), This data was
then subjected to the following steady-state test constraints:

1. Nj max, - Nj min, within a frame < 200 rpm
2, IAN1(3| between frames < +100 rpm

3. TTgc max, - TTgc min. £ 2,5°F for 60 seconds

One frame of data represented 2 seconds of flight,

Data from 27 flight test runs passed these test constraints. Of these 27 flights,
the 3 test flights having the greatest ambient temperature variations were
selected, being ATAmb = 31°F, 30°F and 29°F, In addition, 4 flights having
the greatest change in altitude were selected, being about 11,200 ft, 9700 ft,
8000 ft, and 8000 ft,

It is noted that the set of three flights having the largest ambient temperature

variations is included in the set of four flights having the largest zltitude
variation, This is to be expected, because the ambient temperature typically
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decreases about 3, 5°F to 4, 0°F per 1000-ft increase in altitude, Therefore,
the flights to the highest altitude are most likely to also have the largest
temperature variation,

Several flights were made with altitude variations greater than 10, 000 ft. How-
ever, only the flights referenced above passed the steady-state test constraints,
Test pilots were reluctant to fly above 10, 000 ft for safety reasons. (The
probability of completing a safe autorotation landing during a power climb to
high aliitudes or while hovering at high altitude is greatly diminished,) For
these reasons, no flights were made to 13, 000 ft, or above, which would have
resulted in a AT, = 51°F, Additional tests of three different engines

having degraded engine components were evaluated. These three engines
contained a degraded compressor, erroded N} nozzles (A5 too large), and a
degraded turbine respectively, Safety reasons preveated flight tests with
degraded engines at power in excess of 1000 horsepower (about 70% of rated
power), Therefore, the MPA algorithm was temporarily modified to correspond
to engines and controls having a lower maximum power., This temporary
médification permitted studies of the algorithm on degraded engines.

The sensors available in the flight test data were not compatible with the final
choice of the MPA algorithm, Specifically, the test data did not contain
measurements of gas generator turbine discharge temperature (T7). Therefore,
the test data could not be used to evaluate the MPA in the T7 limit mode, In
addition, a slightly different algorithm must be used (Involving the use of Tg
instead of T7 measurements at the low-power conditione).

Actual engine test data obtained from the AIDAPS program could not be used to
check the validity of the power prediction system selected as the best overall
system because of the lack of actual T7 engine data, Instead, the algorithm
which uses Tg without P7 and assumes that DAN = -DETAPT was evaluated
using actual engine test data. Because the test data does not contain measure-
ments of gas generator turbine discharge temperature (T7), prediction of the
horsepower in the T7 limit morle could not be made,

Eight cases were evaluated: four at sea-level standard-day conditions and four

at altitude., Table XXXV summarizes the results of the evaluation study, Before
discussing each case separately, several general remarks can be made regarding
Table XXXIV:

1. The computed engine deteriorations shown in Table I are not to be
interpreted as an accurate indication of engine health, They serve
only as an Intermediate step in the power prediction scheme,
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2. For all cases, shaft power extraction and compressor bleed air were
assumed to be 0,

3. The "B" and ""C" coefficients required in the prediction algorithm
were obtained from the analytical base engine as described
previously,

4, The predicted MPA is the minimum of the predicted horsepower at Nj
limit and the predicted power at the Wg limit, The actual MPA is the
minimum of the actual measured horsepower at Nj limit and the actual
horsepower at the W¢ limit,

5. For cases 2, 3 and 4, which evaluate the algorithm against degraded
engines, the algorithm was modified to correspond to engines and
controls having a base-line maximum power of 1630 hp, This was
necessary because, for safety reasons, flight tests with degraded
engines were nct carried out at powers much greater than 1000 hp
(approximately 70% of rated power).

Case 1

This case attempts to predict MPA at sea-level standard-day conditions for a
nondegraded engine of unknown serial number which is identified as ""Brand X',
The stored base-line veiues were obtained at a P3 value of 60,36 psia. This is
the closest point to 30% power for which computed values of the "B" coefficients
were available, For this case, the actual makimum horsepower availuble is
1345 hp and occurs at the Wg limit, The maximum power as predicted by the
algorithm is 1240 hp, The error in predicted power is -7, 8%.

Cases 2, 3, and 4

These cases attempt to predict MPA at sea-level standard-day conditions for
degraded engines. The stored steady-state base-line values prior to degradation
as well as the actual steady-state engine data for the degraded engines were
obtained from actual flight test data at a P3 value of 6(.34 psia for cases 2 and

3 and at a Pg value of 69, 94 psia for case 4, For each case, the values of N
and Wy corresponding to a steady-state base-line horsepower of 1000 hp were
found and used to establish the ""C" coefficients at high power.
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Cases 5 and 6

Cases 5 and 6 evaluate the power predicticu algorithm at a standard-day 11, 000-
ft altitude condition for the '"Brand X' engine, Case 5 shows the effzct of sensor
inaccuracy and uncertainty in bleed air and shaft power extraction at tigh power,
Case 6 shows the effect of comparing actual test cata against the analytical base
line. For case 6, low power measurements were obtained at a corrected P3
value of 75, 23 psia, This corresponds to approximately 30% power at 11, 000-ft
standard-day conditions, It should be noted that the predicted power at the Wf
limit is so much greater than the predicted power at the N limit that it would
never be selected as the minimum, This is as expected since at altitude, fuel
flow is not a iIimiting tactor,

Cases 7 and 8

Cases 7 and 8 evaluate the power prediction scheme at a standard-day 10, 000-ft-
altitude condition for a different engine. The comments for cases 5 and 6 apply
for these cases as well.

Results

The AIDAPS flight test data was obtained with normal flight type sensors which
were not of the high accuracy required for power prediction. As a result, the
accuracy of the prediction algorithm evaluated cannot be established from the
flight test data; however, the computed accuracy of the predicticn algorithm
evaluated is within the limitation of the available data, The available AIDAPS
data was also not sufficient to evaluate the power prediction algorithm selected
as the overall best prediction scheme,

SYSTEM HARDWARE IMPLE MENTATION

System implementation studies drew heavily upon the accuracy studies previously
discuvssed. The complexity of the prediction system selected for implementation
studies requires a digital computer and an indicator unit together with associated
sensors,

For the purposes of this study, no dependence upon, or interconnection with, any
other system not an essential part of existing Army helicopters was considered.
It was also assumed that the MPA system, although useful for single-engine
helicopters, will more commonly be used with multiengine helicopters., There-
fore, a study was made of separate versus integrated computer installations for
multiengine applications,
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System Configuration Study

Since one of the prime purposes of the MPA indicating system is improving
flight safety, a major consideration of the basic system configuration is that of
failure characteristics and possible operational redundancy. No system config-
uration can be considered single-failure tolerant unless it can provide the MPA
of all engiaes despite a failure of any MPA system part, Information on the
MPA of one engine alone on multiengine helicop.ers is of very little operational
use. If redundant MPA systems (a computer and indicator for each engine) were
to be true single-failure-tolerant systems, then all computers would require
access to all sensors on all engines and all indicators would require access to
all computers, Such a system would be more complex and expensive than a
single, nonredundant system with only one MPA computer and indicator per
helicopter,

Hardware functional built-in-test (BIT) would be used on cither type of system
to determine if the electronics were functioning properly, BIT would be
supplemented in redundant systems by the ability of the pilot to compare the
MPA of each engine, Each engine's MPA should not differ from the others by
more than a definable amount,

In a single computer installation, BIT must leave negligible chance for a faiiure
producing readings which are not obviously incorrect. A feasible (and typical)
method to supplement BIT for greater reliability of single nonredundant systems
consists of making a dummy MPA calculation with simulated sensor inputs,

A further safety consideration is sensor isolation where sensors are shared

with flight instrumentation, Thjs is important in redundant systems and is
critical for a single nonredundant system because a short circuit between sensor
inputs which are used for purposes other than MPA calculation could provide
incorrect readings for all engines to which they are connected through the MPA
system. Such an effect could persist even though the MPA computer power is
removed, The necezsary isolation can be implemented either externally or
internally to the computer. A recommended external method is to design into
the flight instrumentation an isolated, conditioned cutput. This may be a separate
retransmitting potentiometer or a semiconductor amplifier, It is also possible
to resistively limit faults inside the MPA computer, If this is done, the isolation
must be effective for both power -on and power -off conditions, and it must not
have any failure modes which cause shorting betw<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>